
Docker
How to use Docker in Linux
Install Docker on local drive
Troubleshooting Odoo Docker and Docker Compose
Move / Transfer file from host do docker container

How to use Docker in Linux

Install Docker on local drive
Do you have docker?
`docker -v`
Install Docker
`apt install docker`
Do you have docker-compose?

- Make a "project" directory somewhere and place the compose.yml file in it.

Docker volumes
- Find a place to store the cache, media and config files (with main storage?)
docker-compose.yml file

docker-compose -v

ersion: '3'
services:
 mariadb:
 image: mariadb
 container_name: mariadb
 restart: always
 command: --transaction-isolation=READ-COMMITTED --binlog-format=ROW
 volumes:
 - /local/storage/location:/var/lib/mysql
 environment:
 - MYSQL_ROOT_PASSWORD=Mariaisabitch
 - MYSQL_PASSWORD=Mariaisabitch
 - MYSQL_DATABASE=nextcloud
 - MYSQL_USER=nextcloud

 nextcloud:
 image: nextcloud
 container_name: nextcloud
 restart: always
 links:
 - mariadb
 volumes:
 - /local/storage/location/config:/config
 - /local/storage/location/data:/data

Copy files from Host to Container
docker cp file.txt container-name:/path/**to**/**copy**/file.txt

 - /local/storage/location/apps:/apps
 ports:
 - 5000:80
 environment:
 - MYSQL_PASSWORD=Mariaisabitch
 - MYSQL_DATABASE=nextcloud
 - MYSQL_USER=nextcloud
 - MYSQL_HOST=mariadb

Troubleshooting Odoo
Docker and Docker Compose
I figured out some good debugging methods that both solved this problem and seem generally
useful for figuring out Docker persistent data volume issues.

Test 1: can the container work with an empty Docker volume?

This is a really easy test: just create a new Docker volume and pass that in your -v argument
(instead of a host directory absolute path):

The odoo container immediately worked successfully this way (i.e. my web browswer was able to
connect to the Odoo server). This showed that it could work fine with an (initially) empty data
directory. The obvious question then is why it didn't work with an empty host-directory volume. I
had read that Docker containers can be persnickety about UID/GID ownership, so my next question
was how do I figure out what it expects.

Test 2: inspect the running container's file system

I used docker exec to get an interactive bash shell in the running container:

Inside this shell I then looked at the data directory ownership, to get numeric UID and GID values:

This showed me the UID/GID values were 101:101. (You can exit from this shell by just typing
Control-D)

Test 3: re-run container with matching host-directory UID:GID

I then changed the ownership of my host directory to 101:101 and re-ran the odoo container with
my host-directory mount:

sudo docker volume create hello
sudo docker run -v hello:/var/lib/odoo -p 8069:8069 --name odoo --link db:db -t odoo

sudo docker exec -ti odoo bash

ls -dn /var/lib/odoo

sudo chown 101:101 /tmp/odoo
sudo docker stop odoo

Success! Finally the odoo container worked properly with a host-directory mount. While it's
annoying the Odoo docker docs don't mention anything about this, it's easy to debug if you know
how to use these basic tests.

https://stackoverflow.com/questions/54187785/how-to-debug-persistent-data-volume-mount-for-
docker-odoo-container

sudo docker rm odoo
sudo docker run -v /tmp/odoo:/var/lib/odoo -p 8069:8069 --name odoo --link db:db -t odoo

Move / Transfer file from
host do docker container
Using terminal
From container to host:

sudo docker cp container-id:/path/filename.txt ~/Desktop/filename.txt

From host to container:

sudo docker cp ~/Desktop/filename.txt container-id:/path/filename.txt

